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Abstract

With the recent success of deep learning algorithms, there has been a re-emergence
of applying deep learning techniques to partial differential equations (PDEs). Much
of the recent work has been focused on learning solutions to PDEs given training
data and the general form of the PDE. One largely unexplored area is learning the
parameterization of PDEs when provided information about their solutions.

In this work, data from simulations of Navier-Stokes fluid flow equations are used
to infer the Reynolds number that would parameterize the PDE. Fluid flow around
a cylinder creates a wake, known as the von Kármán vortex street, in which differ-
ent structures form depending on the Reynolds number. Using multi-layer percep-
trons and convolutional neural networks these structures are used to determine the
Reynolds number governing the fluid flow system.

Additionally, the structures found in the von Kármán vortex street are used to de-
termine the location of objects in the fluid flow. In this case, two cylinders are placed
in different locations upstream of an observer in an area unseen by the deep learning
methods. The deep learning methods take solution data from the area downstream
of these objects and use the information to infer an (x,y) coordinate for each object
with respect to a global coordinate system. This thesis shows that deep learning
algorithms can successfully learn the parameterization of the Navier-Stokes equations
from the von Kármán vortex street and predict object locations with a high accuracy.
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Chapter 1

Introduction

1.1 Fluid Dynamics

Fluid dynamics is a field in science and engineering that describes the flow of fluids,

i.e. liquids and gases, with many subfields such as aerodynamics and hydrodynamics.

To solve problems in fluid dynamics, physical properties of the fluids such as velocity,

pressure, density, and temperature are taken under consideration as functions of space

and time. There are many practical applications of fluid dynamics including the

calculation of forces and moments on aircraft, the flow of fluids through pipes and

around bluff bodies, prediction of weather patterns, and understanding nebulae in

interstellar space.

The foundational axioms of fluid dynamics are the conservation laws, in partic-

ular the conservation of mass, conservation of linear momentum, and conservation

of energy. In addition to these conservation laws, fluids are assumed to obey the

continuum assumption. That is, in fluid dynamics the focus is not on the properties

of a single particle but rather on a point in space (relative to some fixed coordinate

system). As time proceeds different fluids flow past these points in space and a his-

tory of the point’s physical properties are kept rather than tracking the individual

particles as they travel through space and time.

1.1.1 Fluid Dynamics Definitions

There are many types of fluids that flow in different ways. Below are the definitions

of some requisite terms to build a vocabulary necessary for discussing fluid flow.
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1.1.1.1 Pressure

Pressure in a static fluid is defined as the normal compressive force per unit area

acting on a surface immersed in the fluid. The pressure in a fluid at rest is isotropic,

i.e. the force acts with equal magnitude in all directions (independent of direction of

measurement). In a dynamical situation there may be other shear and stress forces

but pressure is still isotropic and defined in the same way as the static case. However,

the pressure must be measured as the normal stress on an area which moves along

locally with the fluid.

1.1.1.2 Compressible Flow

All fluids are compressible to some extent. However, the density of a gas changes much

more readily with fluctuations in temperature and pressure than does the density of

a liquid. Thus, for most intents and purposes a gas is considered compressible while

liquids, whose change in density is often negligible, are considered incompressible.

Sound propagation in liquids is one of the few situations in which the compressibility

of liquids must be considered.

1.1.1.3 Newtonian Fluids

As shown by Isaac Newton, in common fluids, such as air and water, the stress due

to viscous forces from neighboring parcels of fluids moving at different velocities is

linearly related to the strain rate. Fluids obeying this linear relationship are called

Newtonian fluids and the coefficient of proportionality is the fluid’s viscosity. Fluids

with more complicated non-linear stress-strain behavior are called non-Newtonian

fluids.

1.1.1.4 Inviscid, Viscous, and Stokes Flow

Stokes flow, or creeping flow, is fluid flow in which the viscous forces are very strong

compared to the inertial forces. In such cases the inertial forces are sometimes ne-

glected. In contrast, when inertial forces have more effect on the velocity field than
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viscous (friction) forces the flow is often modeled as inviscid. Inviscid flow is an

approximation in which viscosity is completely neglected. In cases involving solid

boundaries the no-slip condition generates a region of large strain rate (the boundary

layer) in which viscosity effects dominate and vorticity is generated. In such cases

viscous flow equations, such as Navier-Stokes equations, must be used to calculate

the net forces on the bodies.

1.1.1.5 Steady Flow

A flow that does not depend on time is known as a steady flow. Contrarily, a time

dependent flow is known as unsteady or transient.

1.1.1.6 Laminar vs. Turbulent Flow

A laminar flow is a purely viscous flow in which the fluid flows in laminae or layers. A

stream of dye inserted into a laminar flow will streak out into a thin line and always

be composed of the same fluid particles. In contrast, turbulent flow has velocity

components with random turbulent fluctuations imposed upon their mean values.

Dye inserted into such a flow would quickly become tangled and mixed in with the

fluid as it flows along. Turbulence, which is caused by excessive kinetic energy in

parts of a fluid flow, is one of the least understood natural phenomena.

1.1.2 Navier-Stokes Equations

The Navier-Stokes (NS) equations, given by

ρ
(∂v

∂t
+ v · ∇v

)
= −∇p+∇ ·T + f, (1.1)

are a set of nonlinear partial differential equations that describe fluid flow. The

equations are an extension of Euler’s equations which can only be used to model

inviscid fluid flow as there is no term to account for a fluid’s viscosity. The extension

of Euler’s equations was presented by Claude-Louis Navier, a French mathematician

and engineer, in 1822. Although his equations were correct, there were flaws in the

reasoning of Navier’s mathematical argument. Later, in 1842, George Stokes, an Irish
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mathematician, began looking at problems in fluid dynamics and, among other things,

provided a correct derivation of Navier’s equations thus giving them their name.

The Navier-Stokes equations are really Newton’s second law of motion in disguise.

The left-hand side of Equation 1.1 is the density of the fluid (i.e. its mass) multiplied

by its change in velocity (i.e. its acceleration). The right-hand side of Equation 1.1

includes the different types of forces acting on a small region of the fluid. Therefore

the equations are synonymous to F = ma (Newton’s second law of motion) for a small

region of the fluid. In their unsimplified form, the equations do not have a general

closed form solution so they’re primarily used in computational fluid dynamics. There

are a number of ways to simplify the equations, some of which allow simple fluid

dynamics problems to be solved in closed form, but in general the equations are very

difficult to solve analytically.

The equations model many important phenomena of scientific and engineering

interest including weather, ocean currents, water flow in a pipe, and air flow around

an aircraft’s wing. However, these equations are difficult to solve without making

many assumptions or relying on numerical methods to provide approximations of

their solution. In fact, it’s yet to be shown whether smooth solutions even exist

for the three-dimensional system of equations. Moreover, proving the existence and

smoothness of solutions to the Navier-Stokes equations is one of the Millennium Prize

Problems put forth by the Clay Institute of Mathematics which offers a $1,000,000

reward for anyone who can prove or disprove such solutions exist [1].

1.1.3 The Reynolds Number

The Reynolds number is given by

Re =
ρV D

µ
(1.2)

where ρ is the fluid density, µ is the fluid viscosity, V is the velocity of the fluid,

and D is the diameter of a cylinder (in the case of fluid flow around a cylinder).
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This number is a dimensionless quantity which represents the ratio of inertial effects

to viscous effects in a fluid flow. The Reynolds number was discovered in 1883 by

Osborne Reynolds while investigating fluid flow through a pipe. Reynolds discovered

the transition between laminar and turbulent flows depends on fluid density, viscosity,

velocity, and the internal diameter of the pipe [2]. By applying dimensional analysis,

Rayleigh extended the Reynolds number to flow around spheres and cylinders [3].

A low Reynolds number (Re � 1) indicates that viscous forces are very strong

compared to inertial forces. In such cases, inertial forces are sometimes neglected;

this flow regime is called Stokes or creeping flow. In contrast, high Reynolds numbers

(Re � 1) indicate the inertial effects have more effect on the velocity field than

the viscous effects. For very high Reynolds numbers, the effects of viscosity can be

eliminated completely reducing the Navier-Stokes equations (Equation 1.1) to the

Euler equations, given by

ρ
(∂v

∂t
+ v · ∇v

)
= −∇p, (1.3)

for which solutions exist.

1.2 Problem Statement

One largely unexplored area is inferring the parameterization of partial differential

equations (PDEs) given numerical data or visualizations of the solutions to PDEs. For

example, one might want to infer the Reynolds number governing a system modelled

by the Navier-Stokes equations given images or numerical data of the solution at dif-

ferent time steps. In this thesis modern deep learning methods, such as convolutional

neural networks and multi-layer perceptrons (MLPs), are used with visualizations

and numerical snapshots of simulations of Navier-Stokes equations to determine the

Reynolds number governing the system. Additionally, datasets similar to those used

to infer the Reynolds number are used to determine the locations of objects upstream
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of an observer. In this case, two objects are placed in the geometry and an MLP is

used to determine their (x, y) coordinates with respect to a global coordinate system.

An accurate approximation of the Reynolds number governing a fluid flow can be

valuable in a variety of ways. For example, the NS equations with no body force, i.e.

f = 0 in Equation 1.1, can be written as

ρ
∂v

∂t
+ ρv · ∇v = −∇p+ µ∇2v. (1.4)

This equation can be rendered nondimensional so that it does not depend directly on

physical sizes. To obtain the nondimensional form substitute

v′ =
v

V

p′ =
p

ρV 2

∂

∂t′
=
L

V

∂

∂t

∇′ = L∇

where V and L are the characteristic velocity and length, respectively. This allows

the Navier-Stokes equations to be rewritten as

∂v′

∂t′
= −∇′p′ + µ

ρLV
∇′2v′ (1.5)

where µ
ρLV

= 1
Re

. Dropping the primes for readability and substituting the Reynolds

number gives

∂v

∂t
= −∇p+

1

Re
∇2v. (1.6)

Thus, knowing the Reynolds number allows for the parameterization of the Navier-

Stokes equations. Additionally, for some large-scale systems where the Reynolds

number might be valuable but cannot easily be determined, e.g. distant nebula or

weather systems such as the Madden-Julian oscillation (MJO), providing images to

a model similar to that proposed in this thesis could provide useful data for such

systems.
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Moreover, the ability to predict the onset of turbulent flow is an important design

tool for many applications, making it a well studied problem. For example, predict-

ing the transition in blunt-body flows while accounting for many different physical

effects is handled by Wilcox [4] and methods for predicting the transition in pipe flow

are studied by Soumerai [5, 6]. Turbulence transition around a circular cylinder in

particular has also been studied extensively [7, 8, 9, 10, 11, 12]. Variations of the

present work could be used as monitoring systems wherein data from a fluid flow is

gathered throughout time and used to determine when the system is approaching its

critical Reynolds number, i.e. when it’s transitioning to turbulence.

The data used here is comprised of solutions of Navier-Stokes equations for fluid

flow around a cylinder which creates a wake structure known as the von Kármán vor-

tex street, discussed further in subsection 2.2.3. This provides additional application

of this work as the patterns appearing in these wakes could perhaps provide infor-

mation about objects in the fluid flow, e.g. the number of objects or their positions.

This type of object detection has applications in many domains, e.g. on underwater

and marine vehicles. In similar work by Bouffanis, Wymouth and Yu [13], pressure

sensing is used to a similar effect.

The remainder of this work provides further detail on machine learning, fluid

dynamics, and the proposed models. Chapter 2 gives the theoretical fundamentals

of machine learning and fluid dynamics that are required to understand the models

and experiments but might already be familiar to the reader. Chapter 3 discusses

previous work applying machine learning to PDEs and how machine learning has

been used in fluid dynamics. The details of the proposed models, data generation,

and results are given in Chapter 4 while Chapter 5 discusses the results and future

research directions.
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Chapter 2

Theoretical Fundamentals

2.1 Machine Learning

Machine learning is an application of artificial intelligence used to automate model

building, that is to extract patterns from raw data. To do so machine learning algo-

rithms are designed to iteratively learn from data by minimizing error or maximizing

the likelihood of their predictions being true. A subset of machine learning, deep

learning, deals particularly with neural networks consisting of many layers of neurons.

The interested reader is directed to the work of Goodfellow, Bengio, and Courville

[14] for an in-depth introduction and reference to deep learning and machine learning

principles.

Machine learning has allowed AI systems, that were once hard-coded with knowl-

edge, to acquire knowledge on their own and continue to learn as new data becomes

available. Machine learning algorithms have successfully, been applied to a broad

range of disciplines including computer vision, speech and audio processing, natural

language processing, robotics, bioinformatics and chemistry, video games, search en-

gines, online advertising, finance, and recommender systems. Although deep learning

was introduced to the machine learning community decades ago, its recent increase in

popularity has improved the state-of-the-art in many of the fields mentioned above.

The machine learning algorithms discussed in this thesis are primarily supervised

learning algorithms. Supervised learning algorithms are algorithms that learn to

associate an input with a particular output when given a set of training data. Oc-

casionally, outputs are hard to gather automatically so must be created by a human

“supervisor”, hence this class of algorithm’s name. This is opposed to unsupervised
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learning algorithms which, typically, attempt to extract information from a distribu-

tion without the need of human labor to annotate the examples.

2.1.1 Artificial Neural Networks

Artificial neural networks (ANNs) are popular supervised learning models and the

focal point of deep learning. The structure of these networks is based on the human

brain where billions of nerve cells called neurons connected by axons consume external

stimuli and produce a reaction, if stimulated beyond some threshold. Similarly ANNs

are composed of many nodes which imitate neurons to which stimuli are carried via

weighted connections.

The most popular ANN model is the feedforward ANN or multilayer perceptron

(MLP). In this network architecture, information flows from the network input (repre-

sented as a vector x), through intermediate computations (called hidden layers), and

finally to the output (also represented as a vector y). The example, x, is passed from

the input layer to the output layer where the gradient of a cost function is computed

and the network weights are adjusted. The hidden layers of the network sum their

weighted inputs, which are passed from a previous layer, and pass the result into an

activation function which is typically nonlinear. Popular activation functions are the

logistic sigmoid

f(x) =
1

1 + e−x

which maps values to the range (0, 1), and the hyperbolic tangent (tanh)

tanh(x) =
sinh(x)

cosh(x)
=

1− e−2x

1 + e−2x

producing values in the range (−1, 1). Recently the rectified linear unit (ReLU), given

by

f(x) = max{0,x},

has become the activation function of choice since it offers many advantages over the

others including being less prone to the vanishing gradient problem, being easier to
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compute, and, in practice, networks using ReLU tend to show better convergence

performance. Graphs of logistic sigmoid, hyperbolic tangent, and rectified linear unit

can be seen in Figure 2.1, Figure 2.2, and Figure 2.3, respectively.

More technically, an MLP attempts to approximate a function y = f(x) as y =

f ∗(x) provided a set of data examples X and a set of labeled outputs Y where each

y ∈ Y corresponds to an input x ∈ X. The network is composed of an input layer,

hidden layer(s), and an output layer. The input layer is determined by the number

of features in the dataset and it is left to the network’s designer to determine the

amount and width of hidden layers and how the output will be represented. Neural

networks with two or more hidden layers are known as deep neural networks.

The input vector, x, is fed forward, through each layer, from the input layer to

the output layer. Each connection between neurons is assigned a weight wij where i

is the output of the previous neuron and j is the input of the next. The output of

the kth neuron is calculated as

yk = ϕ

(
m∑
j=0

wkjxj

)
where ϕ is the activation function.

The output layer produces an estimate of the desired response, ŷ, which is used in

the back-propagation algorithm to optimize the weights of the network. The output

of the network, ŷ = f(x; w), is fed into an objective function, E, which calculates

some cost between the estimated and desired response. By finding the gradient of the

cost function with respect to the weights,

∇E
(
∂E

∂w1

,
∂E

∂w2

, ...,
∂E

∂wl

)
the weights of the network can be updated via

∆wi = −η ∂E
∂wi

for i = 1, 2, ..., l

where η is the learning constant determined at implementation. Continuously feeding

(new) examples into the network and adjusting the weights will, hopefully, find a near
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Figure 2.4: A model of the artificial neural network. The x vector is fed forward from
the input layer to the output layer. The network can have zero to many hidden layers.
Each hidden neuron takes a weighted sum of its inputs before passing the sum to a (typi-
cally) nonlinear activation function. Proper selection of activation functions, coupled with
sufficiently wide ANNs, make ANNs universal approximators [15].

minimum value of the cost function, a process known as training. Once an ANN is

trained with a sufficient amount of data, the network can be used for out-of-sample

predictions. The general architecture of an ANN is depicted in Figure 2.4.

2.1.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a special type of ANN used to process

data with a grid-like topology. Usually this refers to image data since the rows and

columns of pixels form a 2-D grid. However, CNNs have also been applied in other

domains such as time-series forecasting wherein the time-series is treated as a 1-D

grid. CNNs get their name from the mathematical operation of convolution which

is a special kind of linear operation. A CNN is just an ANN in which convolution

replaces matrix multiplication in at least one the network’s layers.

Convolution is a mathematical operation on two functions producing a third func-

tion that expresses how one is modified by the other. The operation is defined as the

integral of the product of the two functions after one function is reversed and shifted,
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such as

s(t) = (x ∗ w)(t) =

∫
x(a)w(t− a)da. (2.1)

In the case of CNNs, the function x(t) in Equation 2.1 is the input to the neural

network or convolutional layer, the function w(t) is called the kernel, and the re-

sulting function s(t) is referred to as the feature map. In most machine learning

applications the input is usually a multidimensional array of data and the kernel is a

multidimensional array of parameters which are optimized by the learning algorithm.

Intuitively, a kernel of size n can be thought of as an n×n grid of parameters that

‘slides over’ the grid-like structure of the layer’s input. At each location the kernel is

slid over, a part of the kernel is aligned with a data value on the input, e.g. a pixel

value of an image. The n × n values of the kernel are piecewise multiplied with the

corresponding input data which are then summed to provide a value for s(t), which is

the feature map resulting from the operation. This is done for all potential positions

of the kernel and the result is another image, reduced in dimensionality, created with

the values of s(t).

Typically, each layer of a CNN consists of three steps: several convolutions with

different kernels, running each linear activation through a nonlinear activation func-

tion (e.g. ReLU), and finally applying a pooling operation. A pooling operation re-

places the output of the layer at certain locations with summary statistics of nearby

outputs. For example, a max pooling operation produces the maximum output within

a rectangular neighborhood. In essence, pooling does something similar to the kernels

described above but rather than changing the output values the purpose is to reduce

the size of the feature map(s).

After the convolutional layers, the final feature maps are flattened into a one

dimensional array to be used as input to an ANN. The final layers of the CNN have

an architecture like that generalized in Figure 2.4. This network takes the values

from the final feature maps and applies the operations described in subsection 2.1.1
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to produce the output of the neural network. Note that, even though the final layers

of the CNN are essentially an ANN ‘tacked on’ to the rest of the architecture, every

layer, from the input to the final output, is trained with the same loss function and

metrics. An example of a CNN is given in Figure 2.5.

There are three primary benefits to using CNNs over other neural network ar-

chitectures: sparse interactions, parameter sharing, and equivariant representations.

Sparse interactions, i.e. sparse connectivity, is accomplished by setting the kernel

sizes smaller than the input size. This leads to storing fewer parameters which reduces

memory requirements and improves the statistical efficiency of the model. Parameter

sharing is achieved because each parameter member of the kernel is used at every

position in the input, as opposed to ANNs where each element of the weight matrix

is used exactly once. A final advantage of CNNs is that, due to their particular form

of parameter sharing, the layers have a property called equivariance to translation.

A function is equivariant if, when the input changes, the output changes in the same

way.

2.1.3 Principal Component Analysis

Principal component analysis (PCA) is an unsupervised machine learning algorithm

that learns a representation that is in a lower dimension than its input data and whose

elements have no linear correlation. PCA can be used as an effective dimensionality

reduction technique which preserves as much of the original information as possible

(as measured by least-squares reconstruction error). PCA transforms the input data

to a new coordinate system such that the greatest variance lies on the first coordinate,

the second greatest variance on the second coordinate, etc.

Consider an n × m data matrix X with a mean of 0 (if the data matrix has

non-zero mean it can easily be centered) where each row represents an observation

and each column a feature of the dataset. The components of PCA are given by the

eigenvectors of XTX with the first component being the eigenvector corresponding to
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the largest eigenvalue. The weight matrix W created with the eigenvalues of XTX

(i.e. each eigenvector is a column in W) provides a linear transformation taking each

x ∈ X to the lower-dimensional space. This linear transformation is a rotation of

the input space that aligns the principal axis of variance with the basis of the new

representation.

2.2 Fluid Dynamics

2.2.1 Navier-Stokes Equations

As shown in subsection 1.1.2 the Navier-Stokes (NS) equations are given by

ρ
(∂v

∂t
+ v · ∇v

)
= −∇p+∇ ·T + f (2.2)

where ρ is the density of the fluid, p is the pressure, v is a velocity field, T determines

the stresses, and f represents body forces, i.e. forces that act throughout the entire

region. The NS equations can be written in their nondimensional form with no body

forces (i.e. f = 0 in Equation 2.2) as

∂v

∂t
= −∇p+

1

Re
∇2v. (2.3)

These equations were derived by Claude-Louis Navier, a French engineer and math-

ematician, in 1822. Navier amended Euler’s equations (Equation 1.3) for fluid flow

to cover more realistic cases in which a fluid has a non-zero viscosity. However, there

were flaws in the mathematical reasoning put forth by Navier leading George Stokes,

an Irish mathematician, to provide a correct derivation decades later in 1842. Thus,

the equations came to be known as the Navier-Stokes equations.

A primary innovation of Euler, Navier, and Stokes is to consider the velocity field

of a fluid flow rather than the movements of the individual particles in the fluid. Thus

solutions to the NS equations and Euler’s equation describe the velocity field of the

fluid flow from which good approximations of actual flow patterns can be calculated.

Moreover, this view of fluid flow causes the solutions to these sets of equations to be
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velocity fields or flow fields describing the fluid velocity at particular points in space

and time.

The NS equations were derived from basic physical laws, in particular Newton’s

second law of motion which states that the rate of change of momentum of a body

is directly proportional to the force applied, or, in terms of acceleration, force equals

mass times acceleration (F = ma). In fact, Equation 2.2 is really Newton’s second law

in disguise with the LHS, ρ
(
∂v
∂t

+ v · ∇v
)

, being the fluids mass (density) multiplied

by its acceleration and the RHS, −∇p + ∇ · T + f, being the forces acting on the

fluid. Combining the forces acting on the fluid (i.e. elastic stress caused by the

fluids viscosity and pressure and body forces due to the acceleration of the fluid) and

relating them to the movement of a fluid particle via Newton’s second law produces

the NS equations which, in this context can be seen as a statement of the law of

conservation.

NS equations are especially useful in many different fields of science and engi-

neering because they describe the physics of many different phenomena. Use of the

equations is widespread and may be used to model the weather, ocean currents, fluid

flow in pipes, flows around aircraft wings or automobiles, blood flow in the human

body, and many other phenomena. In practice, since solutions to NS equations are

difficult to obtain analytically, computational solvers are implemented to model these

systems. Because of this, and due to the widespread and important applications of NS

equations, a lot of work is done on finding solutions to NS equations and developing

better numerical solvers so they can more easily be simulated in a computer.

Despite their wide range of practical applications, it has not been proven whether

solutions to the NS equations always exist and, if they do, whether or not they are

smooth (i.e. infinitely differentiable at all domain points). This problem is known

as the Navier-Stokes existence and uniqueness problem and was deemed one of the

seven most important open problems in mathematics making it a millennium prize
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problem [1]. Because of its high applicability, most solutions to the NS equations,

in practice, are found via numerical approximations using algorithms like SIMPLE,

SIMPLER, and MAC. However, for turbulent fluid flows this introduces new problems

since computers can’t handle infinitely complex calculations. Accurately modelling

turbulence requires an impossibly fine computational grid to numerically solve the

NS equations. Because of this statistical models are often used to model turbulence.

2.2.2 The Reynolds Number

The Reynolds number is the dimensionless quantity

Re =
ρV D

µ
,

where ρ is a fluids density, V the fluid velocity, D the diameter of a circular bluff body,

and µ the fluid viscosity. The Reynolds number represents the ratio of inertial forces

to viscous forces. The quantity was discovered by Osborne Reynolds in 1883 who was

studying the flow of fluids through pipes [2]. In particular Reynolds was investigating

when the flow of fluids in pipes would transition from laminar flow to turbulent

flow using dyed water flowing through a glass pipe at different velocities. Reynolds

discovered the transition was dependent on the fluid density, viscosity, velocity, and

pipe diameter, i.e. the quantities represented in the Reynolds number. This concept

would later be extended to fluid flows around cylinders and spheres where the diameter

becomes the external diameter of the body by British scientist John Strutt or Lord

Rayleigh as he’s more commonly called.

When the Reynolds number is low, Re � 1, the viscous forces are very strong

compared to inertial forces. In this case, the inertial forces can be neglected; such a

flow regime is known as Stokes flow. Contrarily, high Reynolds numbers, i.e. Re� 1,

result from a fluid flow in which the velocity field is primarily affected by inertial

forces. In this case the the viscosity can be ignored and simple equations, such as

Euler’s equations 1.3, can be used in place of the NS equations.
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Re < 5: Regime of unseparated
flow

5−15 < Re < 40: A fixed pair of
Föppl vortices in cylinder wake

40 < Re < 150: Two regimes in
which vortex street is laminar

150 < Re < 300: Transition
range to turbulence in vortex

Transition to turbulence
300 < Re < 3∗105: Vortex street
is fully turbulent

Figure 2.6: Regimes of fluid flow across a smooth cylinder. For Reynolds numbers in
the range 3 ∗ 105 < Re < 3.5 × 106 the cylinder wake is narrow and disorganized do to
turbulence. At 3.5 ∗ 106 < Re a turbulent vortex street is re-established. These ranges are
not considered thus not shown in this figure.

At certain Reynolds numbers the fluid flow system is transitioning from a laminar

to a turbulent flow. Such Reynolds numbers are known as critical Reynolds numbers

and have important implications in science and engineering. The ability to predict the

laminar-turbulent transition is an important design tool for equipment such as piping

systems and aircraft wings. The Reynolds number can also be used to determine

dynamic similitude between different fluid flow cases. For example, scaling factors can

be developed using the Reynolds number to relate the airflow over a model airplane’s

wing to a full-scale implementation.

2.2.3 The von Kármán Vortex Street

The von Kármán vortex street is a repeating pattern of vortices in the wake of a bluff

body caused by a process known as vortex shedding. The vortex street is named

after Theodore von Kármán , who discovered the pattern while working on his PhD

dissertation. Von Kármán was inspired by another graduate student to investigate the

cause of an oscillating wake behind a cylinder as fluid flows past. Von Kármán studied

the stability of two configurations of the vortices. In one configuration the vortices

formed in parallel rows and were also aligned vertically. In the other configuration,



20

the vortices formed in parallel rows but were staggered vertically. Of the two, von

Kármán found that only the latter resulted in a stable configuration, thus giving the

vortex street its name.

The von Kármán vortex street only forms at certain Reynolds numbers and various

Reynolds numbers will also create different types of wakes. As shown in Figure 2.6, for

Re < 5 the flow around the cylinder remains unseparated, flowing smoothly around

the cylinder. For higher Reynolds numbers, 5 < Re < 40, two vortices spinning

in opposite directions form directly behind the cylinder, such vortices are known as

Föppl vortices. At Reynolds numbers of 40 < Re < 150 a fully formed von Kármán

vortex street develops and for higher Reynolds numbers the street shortens as faster

moving vortices dissipate more quickly as seen in Figure 2.6 for 150 < Re < 2× 105.

Not shown in Figure 2.6 are two other configurations of the vortex street. At 3×105 <

Re < 3.5× 106, the wake of the cylinder is fully turbulent causing it to be narrower

and disorganized. However, for 3.5 × 106 < Re the wake remains turbulent but a

von Kármán vortex street is re-established. The latter two configurations are not

considered in this thesis since the Reynolds numbers used were between 1 and 4,000.

The von Kármán vortex street has practical applications as engineers must take

into account the vortex shedding when designing a wide range of structures, e.g.

submarine periscopes and industrial chimneys and towers. For example, in the case

of Ferrybridge Power Station C in 1965, the shedding of vortices caused the collapse

of three concrete cooling towers that were clustered together. The vortex streets also

can occur naturally in many large and small scale systems such as that shown in

Figure 2.7. The von Kármán vortex street is the central theme of this thesis. The

ideas introduced here stem from using machine learning to discern information about

a fluid flow or the objects obstructing a fluid flow based on the patterns formed in

the vortex street. Thus the patterns seen in Figure 2.6 are of particular importance

as those are the patterns the deep learning models are intended to learn.
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Figure 2.7: A von Kármán vortex street occurring naturally from wind flowing around
the Juan Fernández Islands.

2.3 Error Measurement

The evaluation of machine learning models usually considers how close the predicted

values are to the actual or observed values. Introduced in this section are the common

measurements of errors that are used to help determine the goodness of a model in

this thesis. Below, ŷ is the predicted value, y is the observed value, and n is the

number of observations in the dataset.

Mean Absolute Error

MAE =

∑n
i=1 |ŷi − yi|

n

Mean Squared Error

MSE =
1

n

n∑
i=1

(
ŷi − yi

)2
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Chapter 3

Literature Review

3.1 Machine Learning and Partial Differential Equations

Some early work on using machine learning algorithms to approximate differential

equations consists of transforming an ordinary differential equation into a linear sys-

tem of equations via discretization of the domain. The solution of the linear system is

then mapped onto the architecture of a Hopfield neural network. The minimization

of this network’s energy function provides the solutions to the system of differen-

tial equations [16, 17, 18]. Similar approaches are derived by using certain types of

splines as basis functions to solve ordinary differential equations. Using splines, such

as B-splines, the solution of a differential equation is found by solving a system of

equations, not necessarily linear, to determine the parameters of the splines. This

form of solution can be mapped onto the architecture of a feedforward neural network

by replacing each spline with the sum of piecewise linear activation functions [19, 20].

These methods are used for solving ordinary differential equations and cannot easily

be adapted to partial differential equations.

Lagaris, Likas, and Fotiadis [21] present a general method for solving both ODEs

and PDEs using ANNs to approximate the differential equations’ solutions resulting

in a differentiable, closed analytic form solution. This method works by combining a

term A(x) having no adjustable parameters and meant solely to satisfy boundary or

initial conditions, with the term F (x, N(x; p)) which employs an ANN parameterized

by p to approximate the solution giving the trial solution

ψt(x) = A(x) + F (x, N(x; p)). (3.1)
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Lagaris, Likas, and Papageorgiou [22] extend this work to boundary value problems

with irregular (complex) boundary geometries. This is done with a system of two

neural networks: an ANN to approximate the solution and a radial basis function

neural network to satisfy the complex boundary which replaces A(x) in Equation 3.1

[21].

Although sparsely studied between 2000 and 2017 there was a strong reemergence

in 2017-2018 of using statistical learning techniques (deep learning, reinforcement

learning, sparse regression, etc.) to solve problems modelled by PDEs. Recent work

has largely been focused on solving two types of problems i) learning solutions to

PDEs given training data and the form of the PDE and ii) inferring PDE parameters

given training data but having no foreknowledge of the system dynamics. Much work

in this area has been generalized to handle arbitrary differential equations but some

is focused on solving a particular problem within a field.

Recent problem-centric work has been in applying machine learning methods to

Navier-Stokes equations [23, 24]. Miyanawala and Jaiman [23] use a CNN for model

reduction of the Navier-Stokes equations for fluid flow past different types of bluff-

bodies. Baymani, Kerayechian, and Effati [24] extend the method presented by La-

garis, et al. [21] by applying it to a linearized form of Navier-Stokes known as Stokes

equation, which produced significantly better results when compared to the Aman-

Kerayechian method (a linear programming approach to the problem).

Weinan, Han, and Jentzen [25] developed deep backwards stochastic differential

equation (BSDE) solver to approximate semilinear heat equations (a class of non-

linear PDEs). This methodology reformulates the nonlinear PDE into a stochastic

control problem. The nonlinear Feyman-Kac formula is used to transform the PDE

into an equivalent BSDE. The BSDE is viewed as a stochastic control problem with

the gradient of the solution as the policy function. This high-dimensional policy

function can be approximated by a deep neural network, as is done in deep reinforce-
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ment learning. This work is extended by Fuji, Takahashi, and Takahasi [26] who use

asymptotic expansion as prior knowledge for the deep neural network which reduces

the error of the approximations and improves the speed of convergence for deep BSDE

solver.

Another extension to Weinan et al. [25] is provided by Beck, Becker, Grohs,

Jaafari, and Jentzen [27] who apply the approximation algorithm to the special case

of linear Kolmogorov PDEs. Khoo, Lu, and Ying [28] use CNNs to extract the

states of a system governed by a PDE using the previous (predicted) state and the

coefficients of the PDE. In this case, uncertainties in the system are built into the

PDE as random coefficients. This method is applied to the Nonlinear Schrödinger

equation subjected to a random potential field.

Sirignano and Spiliopoulos [29] use a neural network architecture inspired by

the long short-term memory recurrent neural network to solve high-dimensional free

boundary PDEs. The architecture and algorithm is named Deep Galerkin Method

(DGM) since it is similar, in spirit, to Galerkin methods. DGM is meshfree, as

meshes become infeasible in high-dimensional spaces, and instead randomly samples

points in space and time. The training of the architecture uses not only the solution to

the PDE but also the initial and boundary conditions in the objective function. DGM

is applied to American and European option pricing PDEs with up to 200 dimensions

(individual stocks considered) as well as a high-dimensional Hamilton-Jacobi-Bellman

PDE and Burger’s equation with satisfactory results.

Rudy et al. [30] consider equations of the form ut = Θ(U,Q)ξ where U is spatial

time series data of the PDE, Q is additional input data (e.g. known potential for

Schrödinger’s equations), and Θ(U,Q) is a matrix of candidate functions each con-

sisting of linear and nonlinear combinations of the solution and its time and space

derivatives. That is Θ(U,Q) could have the form

Θ(U,Q) =
[
1 U U2 ... Q ... Ux UUx ...

]
.
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Each nonzero entry in the vector ξ corresponds to a term in the PDE. Thus, solving

for ξ via sparse regression provides the terms in the PDE.

In a two-part treatise Raissi, Perdikaris, and Karniadakis [31, 32] introduce physics

informed neural networks (PINNs), a new paradigm for solving two types of problems:

data-driven discovery of PDEs and data-driven solutions of PDEs. This is done

by utilizing prior knowledge as a regularization agent that constrains the space of

admissible solutions. The constraints are imposed via automatic differentiation [33]

of a neural network with respect to its input coordinates and model parameters.

PINNs can operate in the small data regime wherein most state-of-the-art machine

learning algorithms lack robustness and fail to provide guarantees of convergence.

The first problem addressed by PINNs is that of computing data-driven solutions

to PDEs of the general form

ut +N [u] = 0, x ∈ Ω, t ∈ [0, T ], (3.2)

where u(x, t) is the hidden solution, N is a nonlinear operator, and Ω is a subset of

RD [31]. This is done by training a neural network on data from the PDE’s initial

and boundary conditions to approximate a solution of the PDE, u(x, t). A function

f := ut +N [u] (3.3)

is constructed by taking the partial derivatives of the ANN with Tensorflow’s [34]

built-in automatic differentiation. Using f as part of the loss function to train u(x, t)

ensures the PINN adheres to the structure imposed by the PDE. The aforementioned

setup is used for continuous time models but a similar derivation is given for discrete

time models via Runge-Kutta methods.

In the second part of the PINN treatise the question of data-driven discovery of

PDEs is investigated [32]. That is, given a small set of scattered and potentially noisy

observations of the latent solution, what are the parameters that best describe the

observed data? Again equations of the form given in Equation 3.2 are considered and
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a PINN constrained by Equation 3.3 is constructed. Because f , Equation 3.3, is con-

structed via automatic differentiation to model the PDE in question, the parameters

to be learned are built into the NN. A derivation for both continuous and discrete

time models is provided [31]. This method for learning the parameters of a PDE is

applied to Burger’s Equation, 2D Navier-Stokes, and Kortewegde Vries equation and

shows promising results even given data with 10% noise corruption.

Raissi [35] extends the previous work [30, 31, 32] by incorporating a second neural

network to approximate the nonlinear operator N (Equation 3.3) as a function of

u(x, t) and its derivatives. When applying the algorithm provided by Rudy et al. [30],

the library of candidate functions will likely be insufficient when the dynamics are

unknown. Additionally, this algorithm can only be used for PDEs with parameters

appearing as coefficients. Approximating N with an ANN replaces the library of

candidate functions with a universal approximator. Combining this second ANN

with a PINN addresses the aforementioned issues and others introduced by Rudy

et al. [30]. Further work by Raissi extends PINNs to forward-backward stochastic

differential equations [36].

3.2 Machine Learning in Fluid Dynamics

As mentioned above, Miyanawala and Jaiman [23] and Baymani, Kerayechian, and

Effati [24] apply deep learning to different problems involving the Navier-Stokes equa-

tions. Guo, Li, and Iorio [37] use CNNs to predict the velocity field of 2D and 3D

non-uniform steady laminar flow. Their model successfully improves the efficiency of

testing multiple designs that are quickly iterated over during the early stages of de-

velopment when compared to traditional, computationally expensive fluid dynamics

solvers. Farimani, Gomes, and Vijay [38] use generative adversarial networks (GANs)

[39] to generate solutions to heat conduction and incompressible fluid flow without

knowledge of the underlying equations. Rather than using ANNs to approximate the
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equations the GANs are used to directly generate solutions. This approach was able

to predict temperature, velocity, and pressure fields with significant test accuracy.

Although promising for modeling high-dimensional complex systems, deep learn-

ing has been scarcely applied to modeling turbulent flows, as highlighted in a recent

review of deep learning in fluid dynamics by Kutz [40]. Some work by Ling, Kurza-

wski, and Templeton [41] uses deep neural networks to improve Reynolds Averaged

Navier-Stokes (RANS) models for turbulence. ANNs have been used to learn im-

proved representations of the Reynolds stress anisotropy tensor from simulation data

to create highly sought after improved RANS models [41]. Shallow ANNs are con-

sidered by Zhang and Duraisamy [42] to examine the efficacy of machine learning

methods when applied to data-driven turbulence and transition modeling techniques

introduced by Duraisamy, Zhang, and Singh [43].

Wang, et al. [44] used deep learning techniques to identify reduced order fluid dy-

namic models. In this work, recurrent neural networks are used for non-intrusive re-

duced order modelling (NIROM). NIROMs, in general, offer the potential to simulate

dynamic systems with increased computational efficiency while maintaining accuracy.

Duraisamy, et al. [45] provide an in-depth look at improving fluid system models, in

particular turbulence models, via many different methods including advances in deep

learning. The focus of this article is on improving Reynolds-averaged Navier-Stokes

(RANS) models via bounding uncertainties in the models. The review covers many

uses of machine learning including various approaches to predicting different features

of the Reynolds stress tensor.

Yiu, et al. [46] use CNNs to detect extreme weather events such as tropical

cyclones, atmospheric rivers, and weather fronts. The data used were images of several

continuous spatial variables (pressure, temperature, precipitation, etc.) stacked into

image patches. For example, in some example images a colormap is used to represent

sea level pressure while solid vector lines show near surface wind distribution. The
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CNNs used to detect patterns in these images achieve 89%-99% accuracy at classifying

whether or not extreme weather events were present in the images. That is, the

response of the CNNs was continuous and used to determine if the extreme weather

event was present in the image or not. Recently Stöfer, Wu, Xiao, and Paterson [47]

also used CNNs to extract features of interest from fluid flow fields using images of

the fluid flows similar to those used in the present work.
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Chapter 4

Method and Results

4.1 Overview

As shown in Chapter 3, deep learning has been extensively applied to solving partial

differential equations. One largely unexplored area is inferring the parameterization of

a PDE given data from its solution. Some applications are inferring Reynolds number

for Navier-Stokes, the growth rate for Fisher’s equation, or the thermal diffusivity

constant of the heat equation. Additionally, for Navier-Stokes equations in particular,

it is yet to be explored what further information can be determined from the von

Kármán vortex street formed by fluid flowing past a bluff body. For example, by

using the structures recurring in the vortex street one could attempt to determine

the number of objects in a certain unseen area or the x and y coordinates of the

objects in reference to some global coordinate system.

In the present work, data from simulations of fluid flows governed by the Navier-

Stokes equations and characterized by a range of Reynolds numbers are used to train

deep learning models for the tasks of parameter inference and object detection. In

the case of object detection, the deep learning models will be trained to determine

the x and y coordinates of two objects in the fluid flow. This chapter introduces

the machine learning method, explains how the data was collected and prepared, and

discusses the setup of the experiments.

4.1.1 Software

To create the datasets for the machine learning methods, two software packages were

used: ANSYS Fluent [48] and Gerris [49]. To generate the dataset to infer the

Reynolds number, a single geometry with an unchanging mesh was needed, as only

the physical parameters of the fluid flow changed. Thus, ANSYS Fluent was used since
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Figure 4.1: The geometry/mesh used to generate the data for inferring the Reynolds
number.

it provides, perhaps, more accurate simulations as well as better performance with its

GPU acceleration. When generating the dataset for object detection, the cylinders

and mesh needed to be updated for each run of the simulation, but the physical

parameters need not change. Therefore, Gerris was used due to its ability to easily

place objects at any location in the domain and its adaptive meshing capabilities.

The models will be implemented in the Python programming language using the

Keras high-level neural networks API [50]. The backend of Keras can be configured

to use Theano, CNTK, or Tensorflow which are open-source symbolic tensor manip-

ulation frameworks. In this case, due to its popularity and ease of use, Tensorflow

[34] was used as the Keras backend. The Pandas data analysis library was used to

reformat the data generated by Gerris and Fluent. Due to the large size of the result-

ing CSV files, the data was again reformatted into the HDF5 format, which is a file

format designed to store and organize large amounts of data. Easily and efficiently

reading and writing the HDF5 formatted files was accomplished with the h5py library.

4.2 Inferring the Reynolds Number

4.2.1 Collecting and Preparing Data

To create the dataset for parameter inference of the NS equations, ANSYS Fluent

was used to simulate fluid flow around a circular cylinder at Reynolds numbers 1, 2,

4, 40, 100, 150, 250, 300, 400, 600, 800, 1000, 1200, 1400, 2900, and 4000. To easily
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Figure 4.2: Velocity magnitude of the fluid flow for different Reynolds numbers at the
same time step. From left to right and top to bottom the Reynolds numbers are 4, 100,
400, 1000, 2900, and 4000.

calculate the Reynolds numbers the diameter of the cylinder, fluid pressure (ρ), and

fluid viscosity (µ) were all equal to 1. In this scenario the Reynolds number is equal

to the fluid’s velocity at the geometry’s inlet since

Re =
ρDU

µ

=
1× 1× U

1

= U

The geometry/mesh in Figure 4.1 was used to generate this dataset. The geometry is

15 by 30 meters with a 1 meter cylinder near the left boundary and centered vertically.

The left boundary is an inlet with the velocity set depending on the current Reynolds

number being simulated. The right boundary is an outlet, and the top and bottom

boundaries are both no-slip walls.
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The mesh in Figure 4.1 has ≈ 80, 000 nodes for which time, pressure, x and y coor-

dinates, and x and y velocities are saved every 10 time steps in CSV format. Images of

the velocity magnitude are generated as well, examples are shown in Figure 4.2. The

simulations were run for 3000 time steps producing 300 images and rows of numerical

data. From the 16 simulations, this provides two datasets, one of images and one of

numerical data, with 4,800 observations each. In the case of the numerical data, five

variables are saved for each of the 80, 000 nodes giving a 400, 000 column dataset.

However, because the data near the wall boundaries is not of interest, the dataset can

be trimmed to include only the von Kármán vortex street. Trimming the numerical

dataset reduces the column count to ≈ 240, 000. In both cases, the response variable

of the datasets was the Reynolds number corresponding to the timestep and image

or numerical data.

4.2.2 Experiments

For the images generated by ANSYS, two experiments were set up: using all of the

data, and using data from matured systems. In the former, all 4,800 images were

used to train the deep learning methods. Of these observations, 80% were used to

train the neural networks and the remainder were used for validation. To create the

dataset for the mature systems, only observations after time step 500 were used. The

reason for using data only from mature systems is that better results can be expected

from systems with a fully formed von Kármán vortex street as the simulations will

be more distinguishable from one another. Again, this dataset is split using 80% for

training and 20% for testing.

The numerical data was used to train MLPs using both the entire dataset and a

rotated dataset created via principal component analysis (PCA) [51]. Time is highly

represented in this dataset as the same time value is included for each node. This

was done since time is an important feature of the dataset and having one time input

among the 200,000+ other inputs would likely conceal the feature. Although the
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Table 4.1: Best results for the 4 different datasets used for inferring the Reynolds numbers.
The datasets are defined in subsection 4.2.2.

Method Dataset Train MAE Train MSE Test MSE Test MSE
CNN Images All 8.1162 140.2229 27.6371 15621.8274
CNN Images After 500 52.3148 62318.4469 54.6317 56562.9193

20x20 ANN Numerical PCA 7.0122 141.9751 28.6968 28525.9391
15x100 ANN Numerical All 1.6917 6.7892 1.8000 8.6977

dataset was trimmed to exclude the regions near the geometry’s border the input to

the neural networks was still very high dimensional (≈ 250, 000 inputs). Because of

this, PCA was used to reduce the dimensionality of the dataset which produced a

dataset with the first 61 principal components which explained 99.5% of the variance

in the dataset. Reducing the dataset dimensionality via PCA can lead to better

predictive capability and will certainly lead to faster training times.

4.2.3 Methods and Results

The image dataset generated by ANSYS Fluent was split into two, an “Images All”

dataset and an “Images After 500” dataset as described in subsection 4.2.2. CNNs

were trained to detect features in the image datasets that provide information about

the Reynolds number. A satisfactory CNN architecture (after the input layer) for

both datasets was found to be:

1. a convolutional layer with 128, 5× 5 kernels and ReLU activation,

2. a convolutional layer with 128, 3× 3 kernels and ReLU activation,

3. a max pooling layer using a 3× 3 neighborhood,

4. a convolutional layer with 64, 3× 3 kernels and ReLU activation,

5. a convolutional layer with 128, 3× 3 kernels and ReLU activation, and

6. a max pooling layer using a 4× 4 neighborhood.

The output of the final max pooling layer was flattened and fed into a fully connected

ANN with ten hidden layers having ten nodes each having ReLU activation func-
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tions. Finally, the last hidden layer is fed into the single neuron output layer with no

activation function.

Because this data is dependent on time, a data format for the CNN input was

constructed which uses time as a fourth dimension to the images. That is, if the RGB

values are read into three m×n arrays, giving a 3×m×n tensor, a fourth m×n array

is appended to the tensor with all entries being the time-step value. Thus, essentially,

each pixel will store red, green, blue, and time information. This results in the input

of the CNN being a tensor of size 4×m× n.

The results of using this CNN architecture to infer the Reynolds number from the

image datasets are shown in Table 4.1. As seen in this table, using the entire dataset

gives satisfactory results, having an average error of only 27.6371 on the test dataset

which, in most situations is a reasonable approximation of the Reynolds number.

That is, a system with a Reynolds number of 1100 will behave similarly to one with a

Reynolds number of 1127. However, when using the dataset consisting of only mature

systems, i.e. ones in which the vortex street should have already formed, results in

the much higher error rate of 54.6317. Two potential reasons for this increased error

could be the systems become more similar as time progresses making it more difficult

to distinguish between different Reynolds numbers, or the reduced dataset had an

insufficient amount of data to effectively train the CNN.

Many ANN architectures were considered for the numerical datasets generated by

Fluent, as well as the dataset rotated via PCA as explained in subsection 4.2.2. The

results for the best neural network architectures are summarized in Table 4.1. This

table shows that when using the entire dataset (“Numerical All”), a neural network

with 15 hidden layers and 100 nodes per layer is able to very accurately predict the

Reynolds number with an average error of only 1.8 when predicting values in the

unseen test dataset. For most purposes, this provides a good approximation, as

systems with similar Reynolds numbers would be behave similarly.
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Figure 4.3: General geometry used by the Gerris simulations. The inlet is on the left of
the geometry, the outlet is on the right, and the top and bottom boundaries are no-slip
walls. Everything left of the origin (negative x values) is in the ‘blind zone’ meaning the
data isn’t seen by the machine learning algorithm.

When using the rotated dataset (“Numerical PCA”), a neural network having

20 hidden layers with 20 nodes in each hidden layer produces results on par with those

of the CNN trained on the entire image database. Although this neural network per-

formed worse than the neural network trained on the original dataset, the estimated

Reynolds numbers are very close to the actual Reynolds numbers and would be suffi-

cient in most cases. However, when using the rotated dataset it is important to note

that the training and predicting times are much faster since the neural network has

only 61 inputs compared to more than 250,000 inputs of the neural network using the

original dataset. Additionally, the ANN trained on the rotated dataset was smaller,

having 400 nodes in its hidden layers compared to 1500 for the ANN using the entire

dataset. This allows the the neural network to more easily be loaded into GPUs with

fewer computational resources, such as those on the NVIDIA Jetson.
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Table 4.2: List of x and y coordinates for the two cylinders used in the Gerris geometries.

x1 y1 x2 y2

-2.1 0 -1.1 0
-1.5 0 -1.3 0
-2 0.5 -2 -0.5
-1 0.5 -1 -0.5
-2 1.5 -1 -1.5

-1.5 -1.5 -1 1.5
-1 -1.5 -1 1.5

-1.5 0 -1 0.1
-2 0 -1.5 0.1
-2 1 -1.8 1.1

-0.2 -1 -0.5 -1.1
-1.292 0.644 -0.707 1.914
-2.428 -2.128 -1.282 -1.679
-0.560 0.045 -0.123 0.323
-1.564 -0.708 -0.566 1.404
-1.447 1.541 -0.102 1.316
-1.142 -1.075 -1.810 1.903
-1.805 0.050 -1.468 0.431
-2.071 -1.788 -0.077 1.576

4.3 Object Detection

4.3.1 Collecting and Preparing Data

When using the Gerris software package, a geometry is defined by a sequence of boxes

connected to each other. The origin is in the center of the first box defined and the

others are placed with respect to the first box or boxes connected to the original box.

Everything in Gerris is dimensionless and each box has unit length. In this particular

case, 35 boxes are connected in a 5×7 grid, giving a geometry that is seven units long

and five units wide. The geometry has an inlet as its left boundary, an outlet as its

right boundary, and two no-slip walls for the top and bottom boundaries. For these

simulations, everything to the left of the origin (negative x values) is considered ‘in

the blind zone’, meaning the data is not used by the neural networks. The general

geometry is shown in Figure 4.3

The geometry also contains two cylinders with diameter 0.1 units at varying x

and y coordinates. Table 4.2 shows a complete list of the cylinder locations used.
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Table 4.3: ANN architectures for object detection with results. The dimensions of the
ANN are given as hidden layers×nodes per hidden layer, i.e. a 10× 10 ANN has 10 hidden
layers with 10 nodes in each layer.

Method Train MAE Train MSE Test MAE Test MSE
10x10 ANN 0.42856 0.3300 0.4525 0.3796
10x25 ANN 0.2614 0.1600 0.2054 0.2953
10x50 ANN 0.2125 0.1555 0.2261 0.1808

10x100 ANN 0.1429 0.0773 0.1649 0.1173
20x50 ANN 0.3847 0.3187 0.3999 0.3422
20x100 ANN 0.3847 0.3387 0.3998 0.3596

Initially, the velocity at each grid point is set to 2 units per second in the x-direction

with fluid flowing into the geometry via the inlet at 2 units per second, also in the

x-direction. Both the initial velocity and inlet velocity are 0 in the y-direction. The

physical parameters of the fluid are µ = 0.0008 for the viscosity and ρ = 1 for the

pressure. With this setup, the Reynolds number is calculated as

Re =
ρDU

µ

=
1 ∗ 0.1 ∗ 2

0.0008

= 250

An example of the initial mesh generated by Gerris is shown in Figure 4.4. In this

case, the 35 separate squares (Figure 4.3) are refined to have 128 smaller sections for

a total of 4,480 nodes in the mesh. Figure 4.4 also shows two cylinders at locations

(−2.1, 0) and (−1.1, 0) with respect to the coordinate system shown in Figure 4.3.

The simulation is run from time t = 0 seconds to t = 5 seconds. The x and y velocities,

x and y locations, pressure, and time values are saved every 0.02 seconds at 56,726

(x, y) locations. This results in a dataset with 250 rows and 283,630 columns for

each simulation. As shown in Table 4.2, 19 different simulations were run providing a

dataset with 283,630 columns and 4,750 rows, of which 80% is used for training and

20% is used for validation/generalization testing.
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Table 4.4: ANN architectures for object detection with results when trained on the rotated
dataset using 400 components. Here, the dimensions of the ANN are given as hidden
layers×nodes per hidden layer, i.e. a 10 × 10 ANN has 10 hidden layers with 10 nodes in
each layer.

Method Train MAE Train MSE Test MSE Test MSE
10x10 ANN 0.0349 0.0047 0.1488 0.1336
10x25 ANN 0.0008 1.6915x10−6 0.0213 0.0284
10x50 ANN 0.0008 1.2974x10−6 0.0203 0.0315

10x100 ANN 0.0003 3.8043x10−710−710−7 0.0273 0.0338
20x50 ANN 0.0020 2.2648x10−5 0.0278 0.0308
20x100 ANN 0.0041 0.0001 0.0154 0.0148

4.3.2 Methods and Results

Since the dataset for object detection contains only numerical data, i.e. there are

no images or time-series data, an MLP was chosen as the machine learning method.

Results from the most promising MLP architectures are presented in Table 4.3. In

this table the MLP architecture is represented as hidden layers×nodes per hidden

layer. A 10 × 10 MLP has 10 hidden layers with 10 nodes in each layer. As seen

in Table 4.3, an MLP trained on the entire object detection dataset doesn’t perform

very well. This is likely due to an insufficient number of observations with respect to

the complexity of the numerical data. Another factor at play could be the similarities

between different simulations. That is, two separate simulations can have similar

solutions at different times but have drastically different responses. However, the

latter would likely apply to a modified version of the dataset as well.

Due to the disappointing results when training on the entire dataset, a dimension-

ality reduction technique known as truncated singular value decomposition (TSVD)

was used. TSVD was chosen over other techniques due to its effectiveness on espe-

cially large datasets. When applying TSVD, 400 components were found to explain

≈ 97.99% of the variance. Those components were used to produce a rotated dataset.

Table 4.4 shows results from training MLPs with the same architectures as were used

on the entire dataset, but with the rotated dataset.
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As shown by Table 4.4, the MLPs trained on the rotated dataset perform signif-

icantly better than those trained on the entire dataset. In addition to performing

better, the MLPs trained on the rotated dataset were faster to train since there were

far fewer inputs. In both Table 4.3 and Table 4.4, the highlighted row represents

the MLP with the best results on the training dataset. On the rotated dataset, the

testing data reaches an MAE of 0.0273 units, meaning that, on average, the difference

between the estimated and actual x and y components was ≈ 0.0273 units. However,

the 10× 100 MLP is likely overfit as the 20× 100 MLP gets even better performance

on the testing dataset. Putting the results into perspective, since the objects have a

radius of 0.05 units, the estimated values were within the boundaries of the objects,

but off-center.
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Chapter 5

Conclusions and Future Work

5.1 Future Work

One interesting future direction is the application of this inverse problem to other

partial differential equations. That is, using the methodology here to infer the pa-

rameterization of other partial differential equations some possibilities are Fisher’s

equation, the heat equation, or other population growth equations such as those used

in medicine. Additionally, the data used here was produced via numerical approxima-

tion rather than using data from real physical systems. It would be interesting to see

if the success of the results would carry over to noisy real-world data. Lastly, as seen

in Figure 4.2 and Figure 2.6, the frequency of the vortices in the von Kármán vor-

tex street differs based on the Reynolds number. The difference in vortex shedding

frequency could be used to predict a different dimensionless number known as the

Strouhal number which is commonly used as a measure of the predominant shedding

frequency.

From a deep learning perspective, different methods or CNN architectures could

be applied to these same datasets in an attempt to get better results. For example,

the time component of the dataset could be dealt with in other ways when training the

CNNs. Moreover, the data here represented time as an input to the machine learning

algorithms rather than viewing the the simulations as a sequence. Convolutional

recurrent neural networks could be used to learn how the system evolves over time

and, potentially, give better predictions of the Reynolds number.

The object detection aspect could also be extended. In this thesis, two objects

were placed upstream of an observer and the machine learning techniques attempted

to predict their locations. It would be interesting to see if the methods would be as
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successful when more objects were placed in the fluid flow. Another unexplored area

is determining the number of objects in the flow. In most cases the machine learning

methods should be able to easily determine the number of objects, since there are

patches of changing velocity created downstream of the objects. However, in some

cases this would be more difficult, for example if the objects are aligned horizontally or

if they are very close together. Furthermore, the only objects used here were circular

cylinders in a channel. A prospective extension is to try different object shapes or

different geometries which might affect the fluid flow and von Kármán vortex street.

5.2 Conclusion

In this thesis it has been shown that the structures in the von Kármán vortex street

can be used to learn properties of the fluid flow and the objects in a fluid flow

system. Using state-of-the-art machine learning techniques and solution data from the

Navier-Stokes equations the Reynolds number and object locations were successfully

determined for different fluid flows. The deep learning methods used were able to

predict these properties to a high degree of accuracy that would be sufficient for most

intents and purposes.

Being able to infer the Reynolds number to a high degree of accuracy allows for the

parameterization of a dimensionless form of the NS equations, provides information

about the physical properties of the fluid, and could be used to determine when

a system is transitioning from laminar to turbulent flow. Although the images like

those generated by ANSYS Fluent would be difficult to capture in a real-world system

they could be generated given physical properties of the system as is done in [46].

Additionally, the von Kármán vortex street occurs naturally in many large scale

systems which can be captured via satellite. Physical properties can be discerned

from images like these, e.g. an approximation of the land mass shown in Figure 2.7.

Finally, the work in this thesis, as well as that done by Liu, et al. [46], shows that
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a technique similar to the one developed here could be used to discern features in

large-scale meteorological systems to predict the onset of extreme weather events.

In the case of object detection, the applications are more obvious. It has been

shown here that the position of objects upstream of an observer can be accurately

discerned given velocity data of the fluid flow. Additionally, a method similar to the

one used here could be repurposed to predict other features of the objects in the fluid

flow system. For example, a neural network could be used to determine the number

of objects upstream of an observer, as well as an approximation of their positions.
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